
Advanced Topic: 
Efficient Synchronization



Multi-Object Programs

• What happens when we try to synchronize 
across multiple objects in a large program?
– Each object with its own lock, condition variables
– Is locking modular?

• Performance
• Deadlock
• Eliminating locks



Synchronization Performance 

• A program with lots of parallel threads can still 
have poor performance on a multiprocessor:
– Overhead of creating threads, if not needed
– Lock contention: only one thread at a time can hold a 

given lock
– Shared data protected by a lock may ping back and 

forth between cores
– False sharing: communication between cores even for 

data that is not shared



Topics

• Multiprocessor cache coherence
• MCS locks (if locks are mostly busy)
• RCU locks (if locks are mostly busy, and data is 

mostly read-only)



Why Cache?



Making things faster by adding 
”closer” memory



Multiprocessor Cache Coherence

• Scenario:
– Thread A modifies data inside a critical section 

and releases lock
– Thread B acquires lock and reads data

• Easy if all accesses go to main memory
– Thread A changes main memory; thread B reads it

• What if new data is cached at processor A?
• What if old data is cached at processor B



Write Back Cache Coherence
• Cache coherence = system behaves as if there is 

one copy of the data
– If data is only being read, any number of caches can 

have a copy
– If data is being modified, at most one cached copy

• On write: (get ownership)
– Invalidate all cached copies, before doing write
– Modified data stays in cache (“write back”)

• On read:
– Fetch value from owner or from memory



Snoop-based Cache Coherence

• Cache controller watches all traffic to memory 
subsystem either directly or via broadcast

• Decides how to modify local cache
• Works well with a bus
• Does NOT scale well with number of 

processors



Cache State Machine

Invalid

Exclusive
(writable)

Read-OnlyRead miss

Write miss

Peer write

Peer write

Peer read Write hit



Directory-Based Cache Coherence

• How do we know which cores have a location 
cached?
– Hardware keeps track of all cached copies
– On a read miss, if held exclusive, fetch latest copy and 

invalidate that copy
– On a write miss, invalidate all copies

• Read-modify-write instructions
– Fetch cache entry exclusive, prevent any other cache 

from reading the data until instruction completes



A Simple Critical Section

// A counter protected by a spinlock
Counter::Increment() {

while (test_and_set(&lock))
;

value++;
lock = FREE; 
memory_barrier(); 

} 



A Simple Test of Cache Behavior

Array of 1K counters, each protected by a 
separate spinlock
– Array small enough to fit in cache

• Test 1: one thread loops over array
• Test 2: two threads loop over different arrays
• Test 3: two threads loop over single array
• Test 4: two threads loop over alternate 

elements in single array



Results (64 core AMD Opteron)

One thread, one array 51 cycles
Two threads, two arrays 52 
Two threads, one array 197
Two threads, odd/even 127



Reducing Lock Contention
• Fine-grained locking
– Partition object into subsets, each protected by its own 

lock
– Example: hash table buckets

• Per-processor data structures
– Partition object so that most/all accesses are made by 

one processor
– Example: per-processor heap

• Ownership/Staged architecture
– Only one thread at a time accesses shared data (CSP)
– Example: pipeline of threads



What If Locks are Still Mostly Busy?

• MCS Locks
– Optimize lock implementation for when lock is 

contended
• RCU (read-copy-update)
– Efficient readers/writers lock used in Linux kernel
– Readers proceed without first acquiring lock
– Writer ensures that readers are done

• Both rely on atomic read-modify-write 
instructions



The Problem with Test and Set
Counter::Increment() {

while (test_and_set(&lock))
;

value++;
lock = FREE; 
memory_barrier(); 

} 
What happens if many processors try to acquire the 

lock at the same time?
– Hardware doesn’t prioritize FREE



The Problem with Test and Test and Set

Counter::Increment() {
while (lock == BUSY || test_and_set(&lock))

;
value++;
lock = FREE; 
memory_barrier(); 

} 
What happens if many processors try to acquire the 

lock?
– Lock value pings between caches



Test (and Test) and Set Performance



Some Approaches

• Insert a delay in the spin loop
– Helps but acquire is slow when not much contention

• Spin adaptively
– No delay if few waiting
– Longer delay if many waiting
– Guess number of waiters by how long you wait

• MCS
– Create a linked list of waiters using compareAndSwap
– Spin on a per-processor location



Atomic CompareAndSwap

• Operates on a memory word
• Check that the value of the memory word 

hasn’t changed from what you expect
– E.g., no other thread did compareAndSwap first

• If it has changed, return an error (and loop)
• If it has not changed, set the memory word to 

a new value



MCS Lock
• Maintain a list of threads waiting for the lock
– Front of list holds the lock
– MCSLock::tail is last thread in list
– New thread uses CompareAndSwap to add to the tail

• Lock is passed by setting next->needToWait = FALSE;
– Next thread spins while its needToWait is TRUE
TCB {

TCB *next;                 // next in line
bool needToWait;   

}
MCSLock {

Queue *tail = NULL; // end of line
}



MCS Lock Implementation
MCSLock::acquire() {

Queue ∗oldTail = tail; 

myTCB−>next = NULL;
while (!compareAndSwap(&tail, 

oldTail, &myTCB)) { 
oldTail = tail;

} 
if (oldTail != NULL) { 

myTCB−>needToWait = TRUE;
oldTail−>next = myTCB;
memory_barrier(); 
while (myTCB−>needToWait)

;
}

}

MCSLock::release() { 
if (compareAndSwap(&tail,  myTCB,

NULL)) {
// no more waiters
return;

}
// someone else stuck a waiter on
// spin until we know who they are
while (myTCB−>next == NULL)

;
// wake them up
myTCB−>next−>needToWait=FALSE;

}



MCS In Operation



Read-Copy-Update
• Goal: very fast reads to shared data 
– Reads proceed without first acquiring a lock
– OK if write is (very) slow

• Restricted update
– Writer computes new version of data structure 
– Publishes new version with a single atomic instruction

• Multiple concurrent versions
– Readers may see old or new version

• Integration with thread scheduler
– Guarantee all readers complete within grace period, 

and then garbage collect old version



Read-Copy-Update



Read-Copy-Update Implementation
• Readers disable interrupts on entry
– Guarantees they complete critical section in a timely 

fashion
– No read or write lock

• Writer
– Acquire write lock
– Compute new data structure
– Publish new version with atomic instruction
– Release write lock
– Wait for time slice on each CPU
– Only then, garbage collect old version of data structure



Deadlock Definition

• Resource: any (passive) thing needed by a 
thread to do its job (CPU, disk space, memory, 
lock)
– Preemptable: can be taken away by OS
– Non-preemptable: must leave with thread

• Starvation: thread waits indefinitely
• Deadlock: circular waiting for resources
– Deadlock => starvation, but not vice versa



Example: two locks

Thread A

lock1.acquire();
lock2.acquire();
lock2.release();
lock1.release();

Thread B

lock2.acquire();
lock1.acquire();
lock1.release();
lock2.release();



Bidirectional Bounded Buffer

Thread A

buffer1.put(data);
buffer1.put(data);

buffer2.get();
buffer2.get();

Thread B

buffer2.put(data);
buffer2.put(data);

buffer1.get();
buffer1.get();

Suppose buffer1 and buffer2 both start almost full.



Two locks and a condition variable
Thread A

lock1.acquire();
…
lock2.acquire();
while (need to wait) {

condition.wait(lock2);
}
lock2.release();
…
lock1.release();

Thread B

lock1.acquire();
…
lock2.acquire();
…
condition.signal(lock2);
…
lock2.release();
…
lock1.release();



Yet another Example



Dining Lawyers

Each lawyer needs two chopsticks to eat. 
Each grabs chopstick on the right first.



Necessary Conditions for Deadlock

• Limited access to resources
– If infinite resources, no deadlock!

• No preemption
– If resources are virtual, can break deadlock

• Multiple independent requests
– “wait while holding”

• Circular chain of requests



Question

• How does Dining Lawyers meet the necessary 
conditions for deadlock?
– Limited access to resources
– No preemption
– Multiple independent requests (wait while holding)
– Circular chain of requests

• How can we modify Dining Lawyers to prevent 
deadlock?



Preventing Deadlock

• Exploit or limit program behavior
– Limit program from doing anything that might 

lead to deadlock
• Predict the future
– If we know what program will do, we can tell if 

granting a resource might lead to deadlock
• Detect and recover
– If we can rollback a thread, we can fix a deadlock 

once it occurs



Exploit or Limit Behavior

• Provide enough resources
– How many chopsticks are enough?

• Eliminate wait while holding
– Release lock when calling out of module
– Telephone circuit setup

• Eliminate circular waiting
– Lock ordering: always acquire locks in a fixed order
– Example: move file from one directory to another



Example

Thread 1

1. Acquire A
2.
3. Acquire C
4.
5. If (maybe) Wait for B

Thread 2

1.
2. Acquire B
3.
4. Wait for A

How can we make sure to avoid deadlock?



Deadlock Dynamics
• Safe state:
– For any possible sequence of future resource 

requests, it is possible to eventually grant all requests
– May require waiting even when resources are 

available!
• Unsafe state:
– Some sequence of resource requests can result in 

deadlock 
• Doomed state:
– All possible computations lead to deadlock



Possible System States



Question

• What are the doomed states for Dining 
Lawyers?

• What are the unsafe states?

• What are the safe states?



Communal Dining Lawyers

• n chopsticks in middle of table 
• n lawyers, each can take one chopstick at a 

time
• What are the safe states?
• What are the unsafe states?
• What are the doomed states?



Communal Mutant Dining Lawyers

• N chopsticks in the middle of the table
• N lawyers, each takes one chopstick at a time
• Lawyers need k chopsticks to eat, k > 1

• What are the safe states?
• What are the unsafe states?
• What are the doomed states?



Communal Mutant Absent-Minded 
Dining Lawyers

• N chopsticks in the middle of the table
• N lawyers, each takes one chopstick at a time
• Lawyers need k chopsticks to eat, k > 1
– k larger if lawyer is talking on his/her cellphone

• What are the safe states?
• What are the unsafe states?
• What are the doomed states?



Predict the Future
• Banker’s algorithm
– State maximum resource needs in advance
– Allocate resources dynamically when resource is 

needed -- wait if granting request would lead to 
deadlock

– Request can be granted if some sequential 
ordering of threads is deadlock free



Banker’s Algorithm
• Grant request iff result is a safe state
• Sum of maximum resource needs of current 

threads can be greater than the total resources
– Provided there is some way for all the threads to finish 

without getting into deadlock
• Example: proceed iff
– total available resources - # allocated >= max 

remaining that might be needed by this thread in 
order to finish 

– Guarantees this thread can finish



Detect and Repair

• Algorithm
– Scan wait for graph
– Detect cycles
– Fix cycles

• Proceed without the resource
– Requires robust exception handling code

• Roll back and retry
– Transaction: all operations are provisional until have 

all required resources to complete operation



Detecting Deadlock



Non-Blocking Synchronization

• Goal: data structures that can be 
read/modified without acquiring a lock
– No lock contention!
– No deadlock!

• General method using compareAndSwap
– Create copy of data structure
– Modify copy
– Swap in new version iff no one else has
– Restart if pointer has changed



Lock-Free Bounded Buffer
tryget() {

do {
copy = ConsistentCopy(p);
if (copy->front == copy->tail)

return NULL;
else {

item = copy->buf[copy->front % MAX];
copy->front++;

} while (compareAndSwap(&p, p, copy));
return item;

}


